Midterm Exam

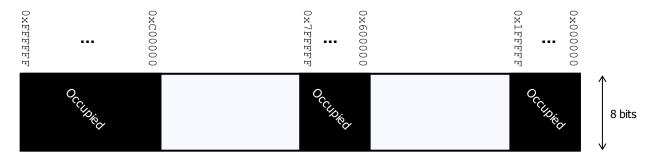
(February 15th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

a) Complete the following table. The decimal numbers are unsigned: (5 pts.)

Decimal	BCD	Binary	Reflective Gray Code
			101010
		1100010	
	010101110110		


b) Complete the following table. Use the fewest number of bits in each case: (12 pts.)

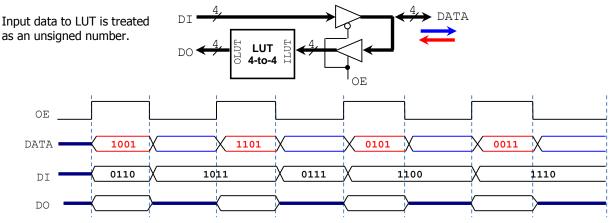
REPRESENTATION				
Decimal	Sign-and-magnitude	1's complement	2's complement	
	1100110			
		11111		
			100000	
		01000101		
-64				
			101000	

c) Convert the following decimal numbers to their 2's complement representations. (3 pts.) \checkmark -16.3125 \checkmark 18.375

PROBLEM 2 (11 PTS)

- The figure below depicts the entire memory space of a microprocessor. Each memory address occupies one byte. 1KB = 2¹⁰ bytes, 1MB = 2²⁰ bytes, 1GB = 2³⁰ bytes
 - ✓ What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor? (2 pts.)
 - ✓ If we have a memory chip of 2 MB, how many bits do we require to address those 2 MB of memory? (1 pt.)
 - We want to connect the 2 MB memory chip to the microprocessor. For optimal implementation, we must place those 2 MB in an address range where every single address shares some MSBs. Provide a list of all the possible address ranges that the 2 MB chip can occupy. You can only use the non-occupied portions of the memory space as shown below.

PROBLEM 3 (10 PTS)

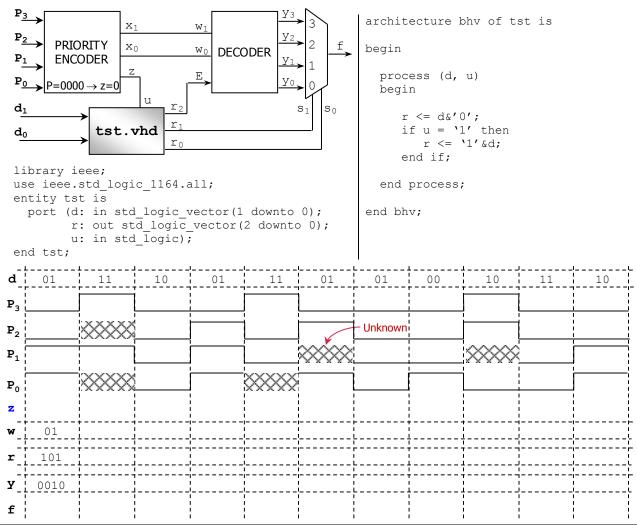

• Given two 4-bit signed (2's complement) numbers A, B, sketch the circuit that computes $(A - B) \times 3$. You can only use adder units (or full adders if you prefer) and logic gates. Make sure your circuit avoids overflow.

PROBLEM 4 (17 PTS)

- a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits *n* to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher byte. (6 pts.) \checkmark 29 - 51 \checkmark 41 + 37
- b) Perform the following operations, where numbers are represented in 2's complement. Indicate every carry from c_0 to c_n . For each case, use the fewest number of bits to represent the summands and the result so that overflow is avoided. (8 pts.)
- c) Get the multiplication result of the following numbers that are represented in 2's complement arithmetic with 4 bits. (3 pts.) $\sqrt{-5 \times 7}$

PROBLEM 5 (10 PTS)

• Given the following circuit, complete the timing diagram (signals *DO* and *DATA*). The LUT 4-to-4 implements the following function: OLUT = [sqrt(ILUT)]. For example: $ILUT = 1100 \rightarrow OLUT = 0100$



PROBLEM 6 (17 PTS)

- Sketch the circuit that implements the following Boolean function: $f = a \oplus b \oplus c \oplus d$ Recall that $a \oplus b \oplus c \oplus d = (a \oplus b) \oplus (c \oplus d)$
 - ✓ Using <u>ONLY</u> an 8-to-1 MUX and NOT gates. (3 pts.)
 - ✓ Implement the previous circuit using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (14 pts.)

PROBLEM 7 (15 PTS)

• Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit. $d = d_1 d_0$, $w = w_1 w_0$, $r = r_2 r_1 r_0$, $y = y_3 y_2 y_1 y_0$

